
Journal of Machine Learning Research 2 (2002) 313-334 Submitted 5/01; Published 2/02

Recommender Systems Using Linear Classifiers

Tong Zhang tzhang@watson.ibm.com

Vijay S. Iyengar vsi@us.ibm.com

IBM Research Division, T. J. Watson Research Center
P.O. Box 218, Yorktown Heights, NY 10598, U.S.A.

Editor: Leslie Pack Kaelbling

Abstract

Recommender systems use historical data on user preferences and other available data on
users (for example, demographics) and items (for example, taxonomy) to predict items
a new user might like. Applications of these methods include recommending items for
purchase and personalizing the browsing experience on a web-site. Collaborative filtering
methods have focused on using just the history of user preferences to make the recommen-
dations. These methods have been categorized as memory-based if they operate over the
entire data to make predictions and as model-based if they use the data to build a model
which is then used for predictions. In this paper, we propose the use of linear classifiers in
a model-based recommender system. We compare our method with another model-based
method using decision trees and with memory-based methods using data from various do-
mains. Our experimental results indicate that these linear models are well suited for this
application. They outperform a commonly proposed memory-based method in accuracy
and also have a better tradeoff between off-line and on-line computational requirements.
Keywords: Recommender Systems, Collaborative Filtering, Decision Trees, Linear Mod-
els, Unbalanced Data

1. Introduction

Recommender systems use historical data on user preferences and purchases and other
available data on users and items to recommend items that might be interesting to a new
user. One of the earliest techniques developed for recommendations was based on nearest-
neighbor collaborative filtering algorithms (Resnick et al., 1994, Shardanand and Maes,
1995) that used just the history of user preferences as input. Sometimes in the literature
the term collaborative filtering is used to refer to just these methods. However, we will
follow the taxonomy introduced by Breese et al. (1998) in which collaborative filtering
(CF) refers to a broader set of methods that use prior preferences to predict new ones. In
this taxonomy, nearest-neighbor collaborative filtering algorithms are categorized as being
memory-based CF. Nearest-neighbor methods use some notion of similarity between the
user for whom predictions are being generated and users in the database. Variations on this
notion of similarity and other aspects of memory-based algorithms are discussed by Breese
et al. (1998). Scalability is an issue with nearest-neighbor methods. The use of dimension
reduction techniques like latent semantic indexing has been proposed to address this issue
(Sarwar et al., 2000).

c©2002 Tong Zhang and Vijay S. Iyengar.

Zhang and Iyengar

In contrast, model-based CF methods use the historical data to build models which are
then used for predicting new preferences. A model-based approach using Bayesian networks
was found to be comparable to the memory-based approach of Breese et al. (1998). More
recently, models based on a newer graphical representation called dependency networks
(Hofmann and Tresp, 1997) have been applied to this problem (Heckerman et al., 2000).
For this task, dependency network models seem to have slightly poorer accuracy but require
significantly less computation when compared to Bayesian network models (Heckerman
et al., 2000). Another model-based method uses clustering to group users based on their
past preferences. The parameters for this clustering model can be estimated by methods like
Gibbs sampling and EM (Ungar and Foster, 1998a,b, Breese et al., 1998). The clustering
model explored by Breese et al. (1998) was outperformed by the model-based approach
using Bayesian networks and by the memory-based approach CR+ described by Breese
et al. (1998).

In this paper, we explore the use of various linear classifiers in a model-based approach
to the recommendation task. Linear classifiers have been quite successful in the text clas-
sification domain (Joachims, 1998, Yang and Chute, 1994, Zhang and Oles, 2001). Some of
the characteristics shared between the text and CF domains include the high dimensionality
and sparseness of the data in these domains. The main computational cost of using linear
classifiers is in the model building phase, which is an off-line activity. The application of
the models is very straightforward especially with sparse data.

Our empirical study will use two data sets that reflect users’ browsing behavior and
one data set that captures their purchases. Because of its wider applicability, we focus
on data that is implicitly gathered, e.g., a boolean flag for each web page representing
whether or not it was browsed as in the anonymous-msweb dataset (Blake et al., 1998).
This is in contrast with explicitly collected data such as ratings explicitly gotten for movies
(Glassman). Section 3 presents results achieved on these datasets by various model-based
approaches using linear classifiers. For comparison we also include results achieved by our
implementation of the memory-based algorithm CR+ described by Breese et al. (1998) and
a model-based approach using decision trees. The linear models studied in this paper are
described in the next section.

This paper expands on some early experimental results reported by Iyengar and Zhang
(2001). We have derived the algorithms more rigorously and added the naive Bayes model
in addition to the regularized linear models considered by Iyengar and Zhang (2001). We
have also investigated the differences between the recommendation domain and the text
categorization domain. This leads to a study on the impact of loss function on the accuracy
of the recommendations. The result of this study gives us some insights on the failure of
some linear models in the recommendation domain even though they perform very well in
the text categorization domain.

2. Model-Based Approaches

The problem of predicting whether a user (or a customer) will accept a specific recommenda-
tion can be modeled as a binary classification problem. However, in a recommender system,
we are also interested in the likelihood that a customer will accept a recommendation. This
information can be used to rank all of the potential choices according to their likelihoods,

314

Recommender Systems Using Linear Classifiers

so that we can select the top choices to present to the customer. It is thus necessary that
the classifier we use returns a score (or a confidence level), where a higher score corresponds
to a higher possibility that the customer will accept the recommendation.

Recommender systems also have characteristics that are similar to those of text catego-
rization. For example, the standard document representation in text categorization is the
“bag of words” vector space model. In this model, a text document is represented by a vec-
tor of word occurrences in the document. Each vector component represents a word feature,
and its value is the number of occurrences of the word in the document. This representation
leads to a very large feature space consisting of all possible words in a language. However,
since each document to be categorized (such as an e-mail message) is usually relatively
short, a vector that represents a document is highly sparse. Therefore text categorization
algorithms have to be suitable to problems with large but sparse features.

This characteristic of text categorization is also shared by recommender systems. Typi-
cally the set of all possible available merchandises (corresponding to all possible words in text
categorization) in a recommender system is very large. However, a customer (corresponding
to a document in text categorization) only buys a small number of items. Items that have
already been bought by the customer correspond to words appearing in a document. This
correspondence leads to a sparse feature representation of the custom profile that is very
similar to the vector space model in text categorization. Consequently, it is reasonable to
start with the assumption that algorithms that perform well in text categorization may also
perform well in the CF domain.

On the other hand, there are also differences between text categorization and CF. There
are typically many fewer categories in a text categorization problem than in a recommender
system. A text categorization system usually determines whether a document belongs to a
certain class or not, while a recommender system provides a ranked list of recommendations
indicating the likelihoods of buying certain items. As a result, the evaluation criteria for
text categorization and recommender systems are different. In addition, categories in text
categorization systems are more likely to be mutually exclusive (that is, a text document
usually focuses on a single or very few topics), while a customer may be interested in a
relatively large number of different items. Also in a recommender system, the features
(items bought) are inter-related to the categories (what item to buy). This is not true
in text categorization. A related difference is that when we observe that a person has not
bought an item, it can either be the case that the person is not interested in the item, or the
case that although the person is interested in the item, (s)he has not yet bought it. Clearly
it is difficult to distinguish these two situations — in fact, the purpose of a recommender
system is simply to distinguish the two situations. This ambiguity shows that the input to
a recommender system is noisy, which makes the CF problem more difficult. On the other
hand, this type of noise does not occur in text categorization.

All these differences between the CF problem and the text categorization problem sug-
gest that we may need to modify algorithms used in text categorization. This also suggests
that not all algorithms that do well in text categorization will automatically do well in the
CF domain. Based on the above discussion, in the following, we shall motivate algorithms
considered in this paper from text categorization. However, we also discuss issues specifi-
cally related to the CF application as well as necessary modifications of the algorithms.

315

Zhang and Iyengar

2.1 Base-line Systems

As a baseline system, we have implemented a version of the nearest neighbor style algorithm,
CR+, described by Breese et al. (1998) and included it in our study. As suggested by
Breese et al. (1998), inverse user frequency, case amplification and default voting heuristics
are used in our implementation of CR+. CR+ achieves very good performance in the
recommender system application. As a comparison, it is also known that nearest neighbor
algorithms achieve very good performance in text categorization (Yang, 1999). However,
the major disadvantage of this method is the large computational and memory complexity.
Consequently, simplifying heuristics have to be used to overcome this problem in practical
applications. Such simplifications were not addressed in our baseline implementation.

In the recommender system application, interpretability of the model used is a desirable
characteristic to be considered in addition to the accuracy achieved and the computational
requirements. For example, in cross-sell applications, interpretability allows marketing an-
alysts to review and possibly modify the generated models.

The interpretability property can be satisfied by using a rule-based system, such as
rules obtained from a decision tree. We shall thus include a decision-tree-based recom-
mender system in this empirical study as an example of using an interpretable model. In
this decision-tree package, the splitting criterion during tree growth is a modified version of
entropy and the tree pruning is done using a Bayesian model combination approach origi-
nated from data compression (Willems et al., 1995, Zhang, 1998). A similar approach has
been suggested by Kearns and Mansour (1998). One useful aspect of our decision tree is
that we take advantage of the sparse data representation. The algorithm has low memory
and time complexity for sparse data. A standard decision-tree package such as the C4.5
program (Quinlan, 1993) that does not take advantage of sparsity in the data will not be
able to handle our problems.

Although a decision-tree rule-based system is efficient and interpretable, it does not
provide the best performance in text categorization. Similarly, experiments in this paper
show that our decision tree does not provide the best performance as a recommender system.
One remedy is to use the so-called “boosting” procedure, which votes on a large number of
decision trees. In fact, the best text categorization result on the standard Reuters evaluation
dataset is achieved using boosted decision trees (Weiss et al., 1999). Unfortunately, this
approach requires a large number of trees (one hundred in Weiss et al., 1999). The resulting
system not only loses the interpretability of a single decision tree, but is also computationally
too expensive to be practically interesting for this application. We thus do not consider this
method in this paper.

It is known that in text categorization, the same level of performance achieved by boosted
decision trees can be achieved by computationally more efficient linear classification methods
(Dumais et al., 1998, Joachims, 1998, Zhang and Oles, 2001). It is thus natural to consider
linear classification in the context of CF.

2.2 Linear Models

We formally define a two-class categorization problem as one to determine a label y ∈
{−1, 1} associated with a vector x of input variables. A useful method for solving this
problem is by linear discriminant functions, which consist of linear combinations of the

316

Recommender Systems Using Linear Classifiers

input variables. Various techniques have been proposed for determining the weight values
for linear discriminant classifiers from a training set of labeled data (x1, y1), . . . , (xn, yn).
Specifically, we seek a weight vector w and a threshold θ such that wT x < θ if its label
y = −1 and wT x ≥ θ if its label y = 1. A score of value wT x − θ can be assigned to each
data point as a surrogate for the likelihood of x to be in class.

The problem just described may readily be converted into one in which the threshold θ
is taken to be zero. One does this by converting a data point x in the original space into
x̃ = [x, 1] in the enlarged space. Each hyperplane w in the original space with threshold
θ can then be converted into [w,−θ] that passes through the origin in the enlarged space.
Instead of searching for both an d-dimensional weight vector along with a threshold θ, we
can search for an (d + 1)-dimensional weight vector along with an anticipated threshold
of zero. In the following, unless otherwise indicated, we assume that the vectors of input
variables have been suitably transformed so that we may take θ = 0. We also assume that
x and w are d-dimensional vectors.

2.2.1 Regularized Discriminative Models

Many algorithms have been proposed for linear classification. We start our discussion with
the least squares algorithm, which is based on the following formulation to compute a linear
separator ŵ:

ŵ = argmin
w

1
n

n∑
i=1

(wT xi − yi)2. (1)

The least squares method is extensively used in engineering and statistics. Although the
method has mainly been associated with regression problems, it can also be used in classi-
fication. Examples include use in text categorization (Yang and Chute, 1994) and uses in
combination with neural networks (Ripley, 1996).

The solution of (1) is given by

ŵ =

(
n∑

i=1

xix
T
i

)−1 (
n∑

i=1

xiyi

)
.

One problem with the above formulation is that the matrix
∑n

i=1 xix
T
i may be singular or

ill-conditioned. This occurs, for example, when n is less than the dimension of x. Note
that in this case, for any ŵ, there exist infinitely many solutions w̃ of w̃T xi = ŵT xi for
i = 1, . . . , n. This implies that (1) has infinitely many possible solutions ŵ.

A remedy of this problem is to use a pseudo-inverse (Yang and Chute, 1994). However,
one problem of the pseudo-inverse approach is its computational complexity. In order to
handle large sparse systems, we need to use iterative algorithms which do not rely on matrix
factorization techniques. Therefore in this paper, we use the standard ridge regression
method (Hoerl and Kennard, 1970) that adds a regularization term to (1):

ŵ = argmin
w

[
1
n

n∑
i=1

(wT xiyi − 1)2 + λw2

]
, (2)

317

Zhang and Iyengar

where λ is an appropriately chosen regularization parameter. The solution is given by

ŵ =

(
n∑

i=1

xix
T
i + λnI

)−1 (
n∑

i=1

xiyi

)
,

where I denotes the identity matrix. Note that
∑n

i=1 xix
T
i +λnI will always be non-singular,

which solves the ill-condition problem. The regularized least squares formulation (2) can
be solved by Algorithm 2 in Appendix A. In order to avoid cluttering the main text, we
leave the algorithms and their justifications to the appendices.

Another popular linear classification method is the support vector machine, which is a
method originally proposed by Cortes and Vapnik (1995) that has nice properties from the
sample complexity theory. Slightly different from our approach of forcing threshold θ = 0,
and then compensating by appending 1 to each data vector, the standard linear support
vector machine (Vapnik, 1998) explicitly includes θ in a quadratic formulation as follows:

(ŵ, θ̂) = arg inf
w,θ

[
1
n

n∑
i=1

ξi + λw2

]
, (3)

s.t. yi(wT xi − θ) ≥ 1− ξi, ξi ≥ 0, i = 1, . . . , n.

By eliminating ξi, the above formula is equivalent to the following formulation:

(ŵ, θ̂) = arg inf
w,θ

1
n

[
n∑

i=1

g(yi(wT xi − θ)) + λw2

]
, (4)

where

g(z) =
{
1− z if z ≤ 1,
0 if z > 1.

(5)

The support vector machine method (3) has been applied to text categorization (Joachims,
1998, Dumais et al., 1998). It achieves a performance comparable to the much more complex
boosted decision trees of Weiss et al. (1999).

It is interesting to compare the least squares approach and the support vector machine
approach. In the least squares formulation, the loss function (z− 1)2 implies that we try to
find a weight w such that wT x ≈ 1 for an in-class data point x, and wT x ≈ −1 for an out-
of-class data point x. Although this means that the formulation attempts to separate the
in-class data from the out-of-class data, it also penalizes a well behaved data point x such
that wT xy > 1. The support vector machine approach remedies this problem by choosing
a loss function that does not penalize a well-behaved data point such that wT xy > 1.

Although a support vector machine in (3) is conceptually appealing for classification
problems, it performs poorly for CF. This is rather surprising since SVMs perform very well
in text categorization. To understand what causes this failure, we have studied histograms
of the linear prediction score wT x from support vector machines (See Section 3). This study
revealed that the problem is caused by extremely unbalanced class distributions typically
observed in CF. That is, for many items, there are usually only a small percentage of buyers
who will be interested in each of them. From the classification point of view, we can achieve

318

Recommender Systems Using Linear Classifiers

a high confidence by saying that no buyer is interested in the item, although this forfeits
the purpose of using a recommender system.

We observe that a major reason that contributes to support vector machines’ suscep-
tibility to unbalanced class distribution is the shape of g(z) in (4). Specifically it does
not penalize an error (wT xy < 0) significant enough. Consider the initial point at w̃ = 0
and θ̃ = −1. In this case, all in-class data contribute g(yi(wT xi − θ)) = 0 in (4), and all
out-of-class data contribute g(yi(wT xi − θ)) = 2 in (4). We now consider a change ∆w of
w̃ that decreases the objective function in (4). For an in-class data point (xi, yi) such that
∆wT xi < 0, g(yi(wT xi−θ)) is increased by −∆wT xi. For an out-of-class data point (xi, yi),
g(yi(wT xi − θ)) is decreased when ∆wT xi < 0, but no more than ∆wT xi (which may also
be an increase). Clearly if there are significantly more in-class data than out-of-class data,
it is difficult to find ∆w that can result in a net effect of decreasing the right hand side of
(4).

The above analysis shows why the standard support vector machine formulation (3) is
susceptible to unbalanced class distribution. The trouble is clearly caused by the fact that
g(z) has a constant gradient for z < 1. This also suggests a simple remedy: we replace the
loss term g by a smooth non-increasing function h so that the gradient magnitude |h′(z)|
of h(z) is large when z < 0 and small when z > 0. In this paper, we consider the function
h(z) = g2(z). Since h′(1) = 0, our above analysis suggests that at w̃ = 0 and θ̃ = −1,
a small change ∆w leads to an increase of the objective function in the order of O(∆w2)
for an in-class data point, and a potential decrease of the objective function in the order
of O(∆w) for an out-of-class data point. Therefore with the modified loss function h(z),
unbalanced class distribution causes significantly fewer problems:

ŵ = argmin
w

[
1
n

n∑
i=1

h(wT xiyi) + λw2

]
, (6)

where

h(z) =
{
(1− z)2 if z ≤ 1,
0 if z > 1.

(7)

Another interpretation of (6) is that it is a modification of the least squares algorithm
so that the method does not penalize a data point with wT xy > 1. In this sense, it is a
mixture of the least squares method and a standard SVM.1 We thus call it modified least
squares. In addition, it has a loss function that is more smooth than that of an SVM,
which makes it numerically simpler to solve. A direct numerical optimization of (6) can be
performed relatively efficiently. Similar to (2), Algorithm 3 in Appendix A solves (6).

We would like to mention that there are other ways to deal with unbalanced data. One
well-known idea is to over-sample the minority class.2 Although this method works well
for binary classification problems, we find for CF, it is difficult to perform this trick in a
consistent way for all items without affecting the relative ranking. We should note that

1. It also belongs to an extended family of support vector machines, although such an extension is recom-
mended against by Vapnik. However, in our case, it performs significantly better than a standard SVM
for CF problems due to its ability to handle unbalanced class distribution.

2. Equivalently, one may also consider using different loss functions for in-class and out-of-class data so as
to penalize errors for the minority class more.

319

Zhang and Iyengar

the class distribution itself does contain important information since even the most naive
“Popular” method performs reasonably well despite its simplicity (see Section 3). In this
sense, the scheme of using (6) is a much better way to handle the unbalanced problem.

To be consistent with other methods described in this paper, we set θ = 0 in (4). As
we have mentioned earlier, the effect of θ will be compensated by appending a constant
1 to each data vector. This modification, given below, does not affect the classification
performance:

ŵ = arg inf
w

[
1
n

n∑
i=1

g(wT xiyi) + λw2

]
. (8)

Due to the non-smoothness of g (it has a discontinuous derivative), it is numerically
difficult to solve the optimization problem (8) directly in the primal form. We shall introduce
an equivalent dual-form of (8) and develop an algorithm to solve the resulting system in
Appendix B. Similarly, a dual form can also be obtained for (6), which can be solved by
Algorithm 6 in Appendix B.

2.2.2 Naive Bayes Generative Model

Another very popular linear classification algorithm is naive Bayes. It has been applied to
text categorization with reasonable performance, although the performance is significantly
worse than that achieved by regularized linear classifiers such as support vector machines.
Still it is interesting to apply this method for CF due to its simplicity. It is also very suitable
for online updating, which could be important in practice. Our experiments indicate that the
naive Bayes model outperforms the decision tree model, but is poorer than the regularized
linear classification methods.

In this paper, we adopt the multinomial model described by McCallum and Nigam
(1998). Instead of taking θ = 0 by embedding the original data vectors into a space of one
larger dimension, in the naive Bayes approach, we explicitly compute θ without doing the
data transformation. The linear weight w is given by w = w1 − w−1, and θ = θ1 − θ−1.
Denote by xi,j the j-th component of the data vector xi, then the j-th component wc

j of wc

(c = ±1) is given by
wc

j = log
λ+

∑
i:yi=c xi,j

λd+
∑d

j=1

∑
i:yi=c xi,j

,

and θc (c = ±1) is given by θc = − log |{i:yi=c}|
n .

The parameter λ > 0 in the above formulation is a smoothing (regularization) parameter.
McCallum and Nigam (1998) fixed λ to be 1, which corresponds to the Laplacian smoothing.
As we shall see from Section 3, the choice of regularization λ can significantly affect the
performance.

There is another difference between the naive Bayes method described above and the
standard naive Bayes method used in text categorization (McCallum and Nigam, 1998).
A standard naive Bayes method would have computed wj as w1

j and θ as θ1. That is, it
only uses the in-class data. Although this approach is reasonable in text categorization (in
that the quantity exp((w1)T xi−θ1) is proportional to the probability of the data belonging
to the category), it completely fails in CF. The reason is that text categories tend to be
more mutually exclusive, while CF recommendations are not—after all, we want to find

320

Recommender Systems Using Linear Classifiers

associations among different items. Note that exp(w1T xi − θ1) does not correspond to
the likelihood that we buy a particular item, which causes the failure of the standard naive
Bayes. The reason for using w = w1−w−1 and θ = θ1−θ−1 is now clear: 1/(1+exp(−(wT xi−
θ))) is the conditional probability of buying the current item under the observation xi.

Due to the above mentioned differences, we call the naive Bayes method used in our
study modified naive Bayes.

3. Experiments

The true value of a recommender system can only be measured by controlled experiments
with actual users. Such an experiment could measure the improvement achieved by a specific
recommendation algorithm when compared to, say, recommending the most popular item.
Experiments with historical data have been used to estimate the value of recommender
algorithms in the absence of controlled live experiments (Breese et al., 1998, Sarwar et al.,
2000). In this paper we will follow experimental procedures similar to those introduced by
Breese et al. (1998).

3.1 Data Sets

Characteristics Dataset
msweb pageweb wine

Training cases 32711 9195 13103
Total test cases 5000 1804 2610

Test cases with at least 2 items (All But 1) 3453 1243 1770
Test cases with at least 3 items (Given 2) 2213 932 1280
Test cases with at least 6 items (Given 5) 657 455 624
Test cases with at least 11 items(Given 10) 102 168 268

Total items 294 5781 663
Mean items per case 3.02 4.36 4.60
in training set

Table 1: Description of the data sets

Characteristics of the data sets used in our experiments are given in Table 1. The first
dataset msweb was introduced by Breese et al. (1998) and added to the UCI repository
under the name anonymous-msweb. As described by Breese et al. (1998), this dataset
contains for each user the web page groups (called vroots) that were visited in a fixed time
period. The total number of items is relatively small (around 300) for this dataset and this
can be attributed to the fact that an item refers to a group of web pages.

The second dataset pageweb also captures visits by users to a different web site but at the
individual page level (with about 6000 total items). Intuitively, one might expect the task
of recommending specific pages to be more difficult than that of recommending page groups.
But the other factor to be considered is that we also have more fine-grained information
at the individual page level about user preferences that can be used by the models. This

321

Zhang and Iyengar

dataset will be useful in evaluating how the various algorithms handle recommending from
a large number of items.

The third dataset wine represents wine purchases made by customers of a leading su-
permarket chain store within a specified period. The dataset captures for each customer
the wines purchased in this period as a binary value (purchased versus not purchased).

We have chosen to use a binary representation of the item/page variables in all the
experiments. An alternative representation would be use more information like the number
of visits to a web page or the time spent viewing a web page or the quantity of wine
purchased.

3.2 Experimental Setup

Following the experimental setup introduced by Breese et al. (1998), the datasets are split
into two disjoint sets (training and test) of users. The entire set of visits (or purchases)
for users in the training set is available for the model building process. The known visits
(purchases) for users in the test set are split into two disjoint sets: given and hidden. The
given set is used by the recommender methods to rank all the remaining items in the order
of predicted preference to the user. This ranked list is evaluated by using the hidden set as
the reference indicating what should have been predicted.

The evaluation metric R, proposed by Breese et al. (1998), is based on the assumption
that each successive item in a list is less likely to be interesting to the user with an ex-
ponential decay. This metric uses a parameter, α, which is the position in the ranked list
which has a 50-50 chance of being considered by the user. Following Breese et al. (1998),
we will set α such that the fifth position has a 50-50 chance of being considered.

The exponential decay in interest, which forms the basis for the R-metric, is a plausible
behavior model for consumers. However, this metric is not easy to interpret. Also, the
number of allowed recommendations can also be constrained by the environment. For ex-
ample, the form factor of a hand-held device might restrict the number of recommendations
on it to a small number. Hence, we will also report results using a simpler metric which
measures the fraction of users for whom at least one valid recommendation (according to
the hidden set as reference) was given in the top K items of the ranked list. In particular,
we will report this metric for K values 1, 3 and 10.

The split of the test set data into the given and hidden sets is done as suggested by
Breese et al. (1998). Three of these splits are denoted as Given 2, Given 5, and Given 10.
These have 2, 5, and 10 items chosen into the given sets, respectively. The fourth split is
denoted as All But 1 because one item for each test user is randomly chosen to be hidden in
this scenario. These scenarios can be used to assess how each recommender system handles
different amounts of information being known and to be hidden (predicted) for each test
user. Table 1 provides for each dataset the number of test users that are included in each
of these scenarios.

Each scenario will be run five times with different random choices for the split between
given and hidden subsets in the test data. Mean values and standard deviations are com-
puted over these five experiments. We have adopted this approach to be compatible with
the prior literature with regard to the training/test splits. A more traditional approach
would have been to use n-fold cross validation where both training and test sets are differ-

322

Recommender Systems Using Linear Classifiers

ent in the experiments. However, given the compatibility constraints, performing multiple
experiments with the given/hidden splits provides some information on the experimental
variability.

3.3 Results

The results achieved for all the four scenarios (Given 2, Given 5, Given 10, All But 1) are
given in Tables 3, 4 and 5 for the datasets msweb, pageweb and wine, respectively. The
format in which these results are provided in these tables for each combination of algorithm
and scenario is explained in Table 2. The mean and the standard deviation for the R-
metric (expressed as percentage) are given on top. The three numbers below indicate the
percentage of test users that had at least one successful recommendation in the top 1, 3 and
10 positions of the ranked list. The least squares and the modified least squares (primal and
dual) linear models were generated using 25 iterations with the regularization parameter λ
set at 0.001. The naive Bayes model used the value of 1 for the smoothing parameter λ (as
in McCallum and Nigam, 1998).

R-metric ± std. dev.
Success Success Success
within top within top within top

1 3 10

Table 2: Explanation of the entries in the Tables 3, 4 and 5

The baseline approach of recommending popular items does significantly poorer when
compared to the other algorithms on datasets with more items. The decision tree model
also exhibits this pattern of not performing as well on datasets with more items.

As mentioned earlier, one advantage of model-based methods is that the model building
is done off-line. The model building times for the datasetmsweb were around 500 seconds for
linear least squares and modified linear (primal) models and around 200 seconds for modified
linear (dual) model. These times were recorded using our prototype implementation on
an IBM RISC System/6000, Model 43P-140 using a 332 MHz PowerPC 604e processor.
These model build times can be compared to those reported by Heckerman et al. (2000) for
Bayesian networks (144.65 seconds) and for dependency networks (98.31 seconds) on a 300
MHz Pentium system. Applying our linear models to compute the scores is comparable in
simplicity to using models like decision trees and rule systems. Hence, recommendations
can be generated quickly in our system using these computed scores.

The accuracy achieved on the public dataset msweb cannot be directly compared with
the results of Breese et al. (1998) and Heckerman et al. (2000) because of random choices
made in the given/hidden sets. The results in Tables 3, 4 and 5 suggest that linear least
squares and the primal and dual forms of the modified version fare well in comparison with
our implementation of CR+. For example, the linear (dual) model is more accurate than
CR+ in 11 out of the 12 experimental setups (3 datasets with 4 scenarios in each) using
the success in the top 3 metric. If we use the R-metric the linear (dual) model beats CR+
in 8 out of the 12 experimental setups.

323

Zhang and Iyengar

algorithm Given2 Given5 Given10 AllBut1
Popular 46.5 ± 0.2 43.7 ± 0.5 41.6 ± 2.0 46.5 ± 0.6

33.9 55.8 82.0 29.0 55.6 80.6 32.2 57.1 79.8 22.7 38.3 63.8
CR+ 56.7 ± 0.1 54.2 ± 0.6 51.5 ± 1.9 60.8 ± 0.6

45.0 70.5 88.7 39.9 68.3 88.1 43.7 67.7 87.8 34.6 54.8 76.2
Decision 53.4 ± 0.3 54.3 ± 0.7 53.0 ± 1.0 62.3 ± 0.5
Tree 46.6 71.3 87.4 48.0 73.9 88.5 51.6 72.9 87.8 38.4 58.4 74.9
Least 55.7 ± 0.3 57.5 ± 0.7 57.0 ± 1.5 64.1 ± 0.5
Squares 46.9 72.4 89.6 49.9 75.0 90.9 55.5 77.1 91.0 38.5 58.8 79.2
Mod LS 55.6 ± 0.3 57.7 ± 0.8 56.9 ± 1.4 64.4 ± 0.5
Primal 46.9 72.6 89.8 50.3 75.2 91.0 56.1 76.9 91.8 38.9 59.1 79.6
Mod LS 55.2 ± 0.2 57.5 ± 0.9 56.7 ± 1.4 64.4 ± 0.6
Dual 46.5 72.9 89.7 50.5 75.6 90.5 57.1 77.3 91.8 39.0 59.0 79.4

Modified 57.8 ± 0.3 57.0 ± 0.9 52.1 ± 0.8 62.5 ± 0.5
Naive Bayes 48.4 72.0 89.4 48.7 71.8 89.5 49.4 71.8 88.2 37.5 57.1 77.0

Table 3: Results on dataset msweb. For explanation of entries refer to Table 2.

algorithm Given2 Given5 Given10 AllBut1
Popular 8.3 ± 0.3 7.0 ± 0.3 6.2 ± 0.7 7.6 ± 0.5

7.5 14.5 29.5 6.0 12.4 27.9 6.0 11.6 29.5 2.3 5.1 11.1
CR+ 29.3 ± 0.8 31.9 ± 1.1 32.5 ± 1.4 33.3 ± 0.3

28.8 47.6 67.2 30.2 50.1 68.7 33.5 55.7 74.2 15.2 27.5 44.9
Decision 16.2 ± 0.1 19.9 ± 0.6 23.3 ± 1.2 22.7 ± 0.7
Tree 23.3 33.5 47.0 28.9 41.6 52.7 36.9 50.7 63.2 13.5 20.2 28.4
Least 27.7 ± 0.3 32.5 ± 0.9 35.4 ± 0.8 34.9 ± 0.6
Squares 30.1 48.4 66.8 33.7 53.2 71.6 41.7 62.9 77.6 17.1 29.8 46.6
Mod LS 28.3 ± 0.3 33.0 ± 0.9 35.7 ± 1.1 35.5 ± 0.5
Primal 30.3 48.7 67.7 33.8 53.3 73.4 41.1 61.4 77.9 17.2 30.2 47.4
Mod LS 27.8 ± 0.3 32.9 ± 0.9 35.5 ± 1.2 35.2 ± 0.5
Dual 29.9 48.7 67.1 34.6 53.4 73.1 41.8 62.3 77.6 17.4 30.0 46.7

Modified 26.1 ± 0.4 29.1 ± 0.8 30.2 ± 1.3 27.7 ± 0.4
Naive Bayes 25.9 43.4 60.9 28.8 47.4 63.9 32.5 52.5 69.9 12.3 22.3 37.6

Table 4: Results on dataset pageweb. For explanation of entries refer to Table 2.

The impact of the regularization parameter λ on the accuracy of three of the models
is shown in Figures 1, 2 and 3. The choice of λ makes a non-negligible difference for all
algorithms. The value for this parameter could be chosen using cross-validation experiments
with the training data, though this was not done in our study. The figures also suggest

324

Recommender Systems Using Linear Classifiers

algorithm Given2 Given5 Given10 AllBut1
Popular 15.3 ± 0.2 14.5 ± 0.2 14.2 ± 0.4 13.6 ± 0.8

10.1 21.7 47.6 6.8 20.4 50.0 5.4 19.9 51.2 5.3 9.2 19.8
CR+ 23.7 ± 0.3 24.6 ± 0.4 26.7 ± 0.8 21.4 ± 0.5

20.3 37.3 60.3 21.6 38.7 61.6 25.5 42.5 65.3 8.5 16.7 29.8
Decision 16.9 ± 0.4 18.6 ± 0.4 22.1 ± 0.5 17.9 ± 0.4
Tree 16.8 27.8 49.0 18.9 33.9 52.8 21.4 41.3 60.1 7.6 14.3 24.1
Least 21.1 ± 0.3 24.7 ± 0.4 28.1 ± 0.3 22.2 ± 0.5
Squares 19.4 35.8 57.1 23.5 43.2 63.8 25.9 46.3 68.1 8.8 17.5 31.3
Mod LS 20.8 ± 0.2 24.4 ± 0.4 27.8 ± 0.3 22.3 ± 0.4
Primal 19.2 35.7 56.9 23.9 42.8 63.6 25.7 46.9 67.2 8.7 17.5 31.2
Mod LS 19.7 ± 0.2 23.4 ± 0.4 27.1 ± 0.5 21.8 ± 0.4
Dual 18.0 34.0 55.6 23.1 41.8 62.9 26.6 46.2 66.9 8.6 17.3 30.2

Modified 24.0 ± 0.3 26.7 ± 0.5 29.0 ± 0.6 22.0 ± 0.4
Naive Bayes 20.1 37.6 59.9 23.7 42.4 65.1 25.5 45.8 68.2 8.3 16.4 31.4

Table 5: Results on dataset wine. For explanation of entries refer to Table 2.

that in practice, one may choose a fixed λ with reasonable performance across a number
of datasets, without any cross-validation λ selection. We would like to mention that for
all algorithms, the value of λ should be same for every potential recommendation item.
Otherwise, the computed scores wT x will not be comparable for different items. A side
effect is that we only have a single λ to determine for each algorithm. Therefore a cross-
validation procedure can be used to determine this value stably.

−5 −4 −3 −2 −1
54

56

58

60

62

64

66

Log (Regularization parameter λ)

R
−

m
e

tr
ic

All but 1

Given 2

msweb

−5 −4 −3 −2 −1
18

20

22

24

26

28

30

32

34

36

Log (Regularization parameter λ)

R
−

m
e

tr
ic

All but 1

Given 2

pageweb

−5 −4 −3 −2 −1
20

20.5

21

21.5

22

22.5

23

23.5

Log (Regularization parameter λ)

R
−

m
e

tr
ic

All but 1

Given 2

wine

Figure 1: Linear least squares classifier accuracy vs. regularization parameter λ

325

Zhang and Iyengar

−5 −4 −3 −2 −1
52

54

56

58

60

62

64

66

Log (Regularization parameter λ)

R
−

m
e

tr
ic

All but 1

Given 2

msweb

−5 −4 −3 −2 −1
16

18

20

22

24

26

28

30

32

34

36

Log (Regularization parameter λ)

R
−

m
e

tr
ic

All but 1

Given 2

pageweb

−5 −4 −3 −2 −1
19

19.5

20

20.5

21

21.5

22

22.5

23

23.5

Log (Regularization parameter λ)

R
−

m
e

tr
ic

All but 1

Given 2

wine

Figure 2: Modified linear least squares (primal) classifier accuracy vs. regularization pa-
rameter λ

−5 −4 −3 −2 −1 0 1
56

57

58

59

60

61

62

63

64

Log (Regularization parameter λ)

R
−

m
e

tr
ic

All but 1

Given 2

msweb

−5 −4 −3 −2 −1 0 1
18

20

22

24

26

28

30

32

34

Log (Regularization parameter λ)

R
−

m
e

tr
ic

All but 1

Given 2

pageweb

−5 −4 −3 −2 −1 0 1
20

20.5

21

21.5

22

22.5

23

23.5

24

24.5

Log (Regularization parameter λ)

R
−

m
e

tr
ic

All but 1

Given 2

wine

Figure 3: Modified naive Bayes classifier accuracy vs. regularization parameter λ

3.4 Impact Of Loss Function

To study the impact of the loss functions we will consider the classifier performance for one
particular item in the msweb dataset. The chosen item has an in-class probability of 0.0205.
The impact of loss functions on the classifier for this item is shown in Figure 4. Each plot
is a histogram of the projected data of wT x − θ, either for in-class, or for out-of-class, or
for combined in-class and out-of-class data. The top row employs formulation (6) with loss
function h(z). The middle row employs formulation (8) with loss function g(z). The bottom
row employs a balancing technique in (8), where we duplicate each in-class data point five
times, which gives an effective 10% in-class population.

Clearly, from the results, we note that without balancing (i.e., over sampling the minority
in-class data), the SVM formulation (8) performs very poorly since it does not separate the
in-class data from the out-of-class data at all. However, with balancing, it correctly classifies

326

Recommender Systems Using Linear Classifiers

some in-class data, but also misclassified some out-of-class data. In this experiment, we over-
sample the in-class data five times. However, it is not clearly what is the best trade-off. We
can also see that the modified least squares formulation (6) manages to partially separate in-
class data from out-of-class data even without balancing. Although the binary classification
error is still poor since the majority of in-class data are centered around wT x−θ ≈ −0.5, the
resulting partial class separation is sufficient to yield useful ranking information when we
compare different items. Table 6 compares the performance of the SVM and the modified
least squares (dual) formulations on the msweb dataset.

algorithm Given2 Given5 Given10 AllBut1
Mod LS 55.2 ± 0.2 57.5 ± 0.9 56.7 ± 1.4 64.4 ± 0.6
Dual 46.5 72.9 89.7 50.5 75.6 90.5 57.1 77.3 91.8 39.0 59.0 79.4
SVM 33.6 ± 0.4 42.1 ± 0.9 43.6 ± 0.8 46.2 ± 0.3

41.3 53.9 66.0 44.6 65.0 76.8 48.8 66.3 81.0 32.7 42.5 53.7

Table 6: Comparing modified least squares (dual) and SVM on dataset msweb. For expla-
nation of entries refer to Table 2.

In addition, the histogram plots can also be used to partially explain why in this partic-
ular application, the standard least squares method does as well as the more complicated
modified least squares method. We simply notice that histograms of projections resulted
from (6) are concentrated in the interval [−1, 1]. Consequently there is virtually no differ-
ence between the standard least squares loss and the modified least squares loss. However,
for other applications such as text categorization, the data projection is typically not con-
tained in [−1, 1]. Consequently, the modified least squares method performs better than
the standard least squares method in those applications.

4. Conclusion

This paper presents a model-based approach to recommender systems using linear classifica-
tion models. We have explored various linear formulations and the corresponding algorithms
for building the models. Experiments are performed with three datasets and recommen-
dation accuracies compared using two different metrics. The experiments indicate that
the linear models are more accurate than a memory-based collaborative filtering approach
reported earlier. This improved accuracy in combination with the better computational
characteristics makes these linear models very attractive for this application.

Acknowledgments

We would like to thank Murray Campbell, Richard Lawrence and George Almasi for their
help during this work.

327

Zhang and Iyengar

−1.5 −1 −0.5 0 0.5 1 1.5
0

20

40

60

80

100

120

140

loss=h(z) (in-class)
−1.5 −1 −0.5 0 0.5 1 1.5
0

0.5

1

1.5

2

2.5
x 10

4

loss=h(z) (out-of-class)
−1.5 −1 −0.5 0 0.5 1 1.5
0

0.5

1

1.5

2

2.5
x 10

4

loss=h(z) (combined)

−1.5 −1 −0.5 0 0.5 1 1.5
0

100

200

300

400

500

600

700

loss=g(z) (in-class)
−1.5 −1 −0.5 0 0.5 1 1.5
0

0.5

1

1.5

2

2.5

3

3.5
x 10

4

loss=g(z) (out-of-class)
−1.5 −1 −0.5 0 0.5 1 1.5
0

0.5

1

1.5

2

2.5

3

3.5
x 10

4

loss=g(z) (combined)

−1.5 −1 −0.5 0 0.5 1 1.5
0

50

100

150

200

250

300

balanced g(z) (in-class)
−1.5 −1 −0.5 0 0.5 1 1.5
0

0.5

1

1.5

2

2.5

3

3.5
x 10

4

balanced g(z) (out-of-class)
−1.5 −1 −0.5 0 0.5 1 1.5
0

0.5

1

1.5

2

2.5

3

3.5
x 10

4

balanced g(z) (combined)

Figure 4: Impact of different loss functions (2% in-class population)

328

Recommender Systems Using Linear Classifiers

Appendix A. Primal Algorithms

Algorithms considered here are modified from those of Zhang and Oles (2001) for text cate-
gorization. We include them here for completeness. We consider a more general formulation

ŵ = arg inf
w

[
1
n

n∑
i=1

f(wT xiyi) + λw2

]
, (9)

where f is a relatively smooth function which has a continuous first order derivative and
a non-negative piecewise continuous second order derivative. In this case, the formulation
in (9) is convex, thus it has a unique local minimum which is also the global minimum.
Methods investigated in this section are based on the following generic relaxation algorithm
(see Golub and Van Loan, 1996):

Algorithm 1 (Primal Gauss-Seidel)

let w = 0 and ri = wT xi

for k = 1, 2, . . .
for j = 1, . . . , d
find ∆wj by approximately minimizing

1
n

∑
i f(ri +∆wjxijyi) + λ(wj +∆wj)2 (∗)

update r: ri = ri +∆wjxijyi (i = 1, . . . , n)
update w: wj = wj +∆wj

end
end

The above relaxation method is often called the Gauss-Seidel procedure in numerical
optimization. The algorithm cycles through components of w, and optimizes one component
at a time (while keeping others fixed). For our problems, this method converges under quite
moderate conditions as long as we reduce the objective function value in (∗) at each step.

We can now apply the above procedure to the regularized linear least squares fit formu-
lation (2), and obtain Algorithm 2 where (∗) is solved exactly.

Algorithm 2 (Least Squares Primal)

let w = 0 and ri = 0
for k = 1, 2, . . .
for j = 1, . . . , d
∆wj = − (∑i(ri − 1)xijyi + λnwj) /

(∑
i x

2
ij + λn

)
update r: ri = ri +∆wjxijyi (i = 1, . . . , n)
update w: wj = wj +∆wj

end
end

329

Zhang and Iyengar

To apply Algorithm 1 to (6), it is helpful to further enhance the smoothness of h by
introducing a continuation parameter c ∈ [0, 1], so that h(x) = h0(x) and the smoothness
of h′′

c (x) decreases as c decreases:

hc(x) =

{
(x − 1)2 x ≤ 1
c(x − 1)2 x > 1.

Algorithm 1 should then be modified so that at each step k, a different ck is chosen (so
that 1 = c1 ≥ c2 ≥ · · · ≥ cK = 0), and the function f shall be replaced by fck

. Note
that this introduction of a continuation parameter is not required in order for Algorithm 1
to converge. However, in our experience, this simple modification accelerates the rate of
convergence. In the following, we compute a Newton update to approximately solve (∗).
However, to make the method more robust, we use a step size ∆wj in (∗) that is half of the
computed Newton update.

Algorithm 3 (Modified Least Squares Primal)

let w = 0 and ri = 0
pick a decreasing sequence of 1 = c1 ≥ c2 ≥ · · · ≥ cK = 0
for k = 1, 2, . . . , K
define function Ck(ri) = 1 if ri ≤ 1 and Ck(ri) = ck otherwise
for j = 1, . . . , d
∆wj = −0.5 [∑i Ck(ri)(ri − 1)xijyi + λnwj] /

[∑
i Ck(ri)x2

ij + λn
]

update r: ri = ri +∆wjxijyi (i = 1, . . . , n)
update w: wj = wj +∆wj

end
end

Appendix B. Dual Algorithms

As we have mentioned, it is inappropriate to solve (8) directly using the primal Gauss-Seidel
method in Appendix A, due to the non-smoothness of h. We need to introduce a dual form
of (9) and use a dual form of the Gauss-Seidel method to solve the resulting system.

To obtain a dual form of (9), we consider an auxiliary variable ζi for each data point xi:

(ŵ, ζ̂) = arg inf
w
sup

ζ

[
1
n

n∑
i=1

[−k(ζi) + ζiw
T xiyi] + λw2

]
,

where k(·) is the Legendre transform of f(·): k(v) = supu(uv− f(u)). It is well known that
k is convex. By switching the order of infw and supζ , which is valid for the above minimax
convex programming problem (see Zhang and Oles, 2001, for proof), we obtain

ζ̂ = arg sup
ζ

[
1
n

n∑
i=1

[−k(ζi) + ζiw
T xiyi] + λw2

]
,

330

Recommender Systems Using Linear Classifiers

where w is minimized at w = − 1
2λn

∑
i ζixiyi. Substituting into the above equation, we

obtain

ζ̂ = arg inf
ζ

[
n∑

i=1

k(ζi) +
1
4λn

(
n∑

i=1

ζixiyi)2
]

, (10)

and

ŵ = − 1
2λn

∑
i

ζ̂ixiyi.

Similar to Algorithm 1 which solves the primal problem (9), the following generic relax-
ation algorithm solves the dual problem (10):

Algorithm 4 (Dual Gauss-Seidel)

let ζ = 0 and vj = 0 for j = 1, . . . , d
for k = 1, 2, . . .
for i = 1, . . . , n
find ∆ζi by approximately minimizing

k(ζi +∆ζi) + 1
4λn(2∆ζiv

T xiyi +∆ζ2i x2
i) (∗∗)

update v: vj = vj +∆ζixijyi (j = 1, . . . , d)
update ζ: ζi = ζi +∆ζi

end
end
let w = − 1

2λnv.

An important implementation issue for Algorithm 4 is that the data ordering can have
a significant effect on the rate of convergence (the feature ordering does not appear to have
a very noticeable effect on Algorithm 4). More specifically, if we order the data points
such that members in each class are grouped together, then we may experience a very slow
convergence. On the other hand, the dual algorithm appears to work very well with a
random data ordering.

For the modified SVM formulation in (8), we obtain

k(z) =

{
z −1 ≤ z ≤ 0,
+∞ otherwise.

The +∞ value is effectively a simple constraint on each dual variable: −1 ≤ z ≤ 0. Algo-
rithm 4 can be applied to this formulation. The optimization step (∗∗) in Algorithm 4 can
be solved exactly, and this leads to the following method:

331

Zhang and Iyengar

Algorithm 5 (Modified SVM Dual)

let ζ = 0 and vj = 0 for j = 1, . . . , d
for k = 1, 2, . . .
for i = 1, . . . , n
∆ζi = min

(
−ζi,max

(
−1− ζi,−2λn+vT xiyi

x2
i

))
update v: vj = vj +∆ζixijyi (j = 1, . . . , d)
update ζ: ζi = ζi +∆ζi

end
end
let w = − 1

2λnv.

For the modified least squares formulation (6), k(z) is defined only for z ≤ 0 (k(z) = +∞
for z > 0): k(z) = z2/4 + z. We thus obtain an instance of Algorithm 4 with (∗∗) solved
exactly:

Algorithm 6 (Modified Least Squares Dual)

let ζ = 0 and vj = 0 for j = 1, . . . , d
for k = 1, 2, . . .
for i = 1, . . . , n
∆ζi = min

(
−ζi,− (2+ζi)λn+vT xiyi

λn+x2
i

)
update v: vj = vj +∆ζixijyi (j = 1, . . . , d)
update ζ: ζi = ζi +∆ζi

end
end
let w = − 1

2λnv.

References

C. Blake, E. Keogh, and C.J. Merz. UCI repository of machine learning databases.
University of California, Irvine, Dept. of Information and Computer Science,
URL=http://www.ics.uci.edu/∼mlearn/MLRespository.html, 1998.

J.S. Breese, D. Heckerman, and C. Kadie. Emperical analysis of predictive algorithms
for collaborative filtering. In Proceedings of Fourteenth Conference on Uncertainty in
Artificial Intelligence. Morgan Kaufmann, 1998.

C. Cortes and V.N. Vapnik. Support vector networks. Machine Learning, 20:273–297, 1995.

332

Recommender Systems Using Linear Classifiers

S. Dumais, J. Platt, D. Heckerman, and M. Sahami. Inductive learning algorithms and
representations for text categorization. In Proceedings of the 1998 ACM 7th International
Conference on Information and Knowledge Management, pages 148–155, 1998.

S. Glassman. Eachmovie data set. URL=http://research.compaq.com/SRC-/eachmovie/.

G.H. Golub and C.F. Van Loan. Matrix computations. Johns Hopkins University Press,
Baltimore, MD, third edition, 1996.

David Heckerman, David Maxwell Chickering, Christopher Meek, Robert Rounthwaite,
and Carl Kadie. Dependency networks for inference, collaborative filtering, and data
visualization. Journal of Machine Learning Research, 1:49–75, 2000.

A. E. Hoerl and R. W. Kennard. Ridge regression: Biased estimation for nonorthogonal
problems. Technometrics, 12(1):55–67, 1970.

R. Hofmann and V. Tresp. Nonlinear markov networks for continuous variables. In Ad-
vances in Neural Information Processing Systems 9, editors: M. Mozer, M. Jordan and
T. Petsche. MIT Press, 1997.

V.S. Iyengar and T. Zhang. Empirical study of recommender systems using linear classifiers.
In Proceedings of the Fifth Pacific-Asia Conference on Knowledge Discovery and Data
Mining, pages 16–27, 2001.

T. Joachims. Text categorization with support vector machines: learning with many relevant
features. In European Conference on Machine Learing, ECML-98, pages 137–142, 1998.

M. Kearns and Y. Mansour. A fast, bottom-up decision tree pruning algorithm with near
optimal generalization. In Proceedings of the 15th International Conference on Machine
Learning, pages 269–277, 1998.

Andrew McCallum and Kamal Nigam. A comparison of event models for naive bayes text
classification. In AAAI/ICML-98 Workshop on Learning for Text Categorization, pages
41–48, 1998.

J. Quinlan. C4.5 programs for machine learning. Morgan Kaufmann Publishers, 1993.

P. Resnick, N. Iacovou, M. Suchak, P. Bergstrom, and J. Riedl. Grouplens: An open
architecture for collaborative filtering of netnews. In Proceedings of CSCW, 1994.

B.D. Ripley. Pattern recognition and neural networks. Cambridge University Press, 1996.

B. Sarwar, G. Karypis, J. Konstan, and J. Riedl. Analysis of recommendation algorithms
for e-commerce. In Proceedings ACM E-Commerce 2000 Conference, 2000.

U. Shardanand and P. Maes. Social information filtering: Algorithms for automating word
of mouth. In Proceedings of CHI’95, 1995.

L. Ungar and D. Foster. Clustering methods for collaborative filtering. In Workshop on
Recommendation Systems at the Fifteenth National Conference on AI, 1998a.

333

Zhang and Iyengar

L. Ungar and D. Foster. A formal statistical approach to collaborative filtering. In
CONALD’98, 1998b.

V.N. Vapnik. Statistical learning theory. John Wiley & Sons, New York, 1998.

S.M. Weiss, C. Apte, F. Damerau, D.E. Johnson, F. Oles, T. Goetz, and T. Hampp. Maxi-
mizing text-mining performance. IEEE Intelligent Systems and their applications, 14(4):
63–69, July/August 1999.

F.M.J. Willems, Y.M. Shtarkov, and T.J. Tjalkens. The context tree weighting method:
basic properties. IEEE Trans. on Inform. Theory, 41(3):653–664, 1995.

Yiming Yang. An evaluation of statistical approaches to text categorization. Information
Retrieval, 1:69–90, 1999.

Yiming Yang and Christopher G. Chute. An example-based mapping method for text
categorization and retrieval. ACM Transactions on Information Systems, 12:252–277,
1994.

Tong Zhang. Compression by model combination. In Proceedings of IEEE Data Compression
Conference, DCC’98, pages 319–328, 1998.

Tong Zhang and Frank J. Oles. Text categorization based on regularized linear classification
methods. Information Retrieval, 4:5–31, 2001.

334

